Select Keyboard:
Türkçe ▾
  1. Türkçe
  2. English
  3. العربية
  4. Dansk
  5. Deutsch
  6. Ελληνικά
  7. Español
  8. فارسی
  9. Français
  10. Italiano
  11. Kurdî
  12. Nederlands
  13. Polski
  14. Português Brasileiro
  15. Português
  16. Русский
  17. Suomi
  18. Svenska
  19. 中文注音符号
  20. 中文仓颉输入法
X
"1234567890*-Bksp
Tabqwertyuıopğü,
CapsasdfghjklşiEnter
Shift<zxcvbnmöç.Shift
AltGr

green's theorem

listen to the pronunciation of green's theorem
English - English
A generalization of the fundamental theorem of calculus to the two-dimensional plane, which states that given two scalar fields P and Q and a simply connected region R, the area integral of derivatives of the fields equals the line integral of the fields, or

\iint_R \left( {\partial Q \over \partial x} - {\partial P \over \partial y}\right) dx \, dy = \oint_{\partial R} P\, dx + Q\, dy .

Letting \vec G = (P, Q) be a vector field, and d\vec l = (dx, dy) this can be restated as

with the earlier formula resembling Stoke's theorem, and the latter resembling the divergence theorem.